

1 | Proprietary and confidential Information ©2024, AppSentinels.ai

AppSentinels Edge Controller Pre-
Requisites & Deployment

2 | Proprietary and confidential Information ©2024, AppSentinels.ai

Contents
1. Introduction ... 4

2. Pre-requisites ... 4

Operating System and Hardware Requirements: - ... 4

Packages Required: - .. 4

Network Connectivity Requirements: - ... 4

3. Deployment Options .. 5

1. Docker-compose .. 5

Secure Logging: ... 5

2. Installation script ... 6

2.1 AWS EC2 support .. 6

2.2 Script Configuration: ... 6

3. Kubernetes service 7

4. Horizontally Scaled Deployment.. 8

Architecture Overview ... 8

Key Characteristics ... 9

Request Flow ... 9

Edge Controller Load Balancer Requirements ... 9

Sample Configuration .. 9

5. Verify Deployment ..10

3 | Proprietary and confidential Information ©2024, AppSentinels.ai

Revision Date Modified Author Comments

1.0 08-Dec-23 Initial Draft

1.1 01-Aug-24 Sachin Created consolidated controller deployment
document

1.2 12-Jun-2025 Sachin Horizontal scaling

4 | Proprietary and confidential Information ©2024, AppSentinels.ai

1. Introduction

AppSentinels Edge Controller processes the API traffic data received from the Sensor and
forwards the meta data to the Cloud Platform for AI/ML processing. The Edge Controller
detects the Security Events and takes preventive action using Firewall/API GW.

2. Pre-requisites

Operating System and Hardware Requirements: -
• Operating System: Ubuntu 22.04 or REDHAT 8.6

• CPU: 4 cores x86_64*

• RAM: 16G of RAM*

• 50 GB free disk space in /var partition

* CPU & Memory requirement will change based on API traffic rate and models enabled for detection. Approximately, a
single core of controller will allow for ingesting of 500-1000 API logs per second. The above number will serve
between 2000 to 4000 API logs per second.

Packages Required: -
• docker version 23.0 or higher

• docker-compose version 1.28.6 or higher (if deploying with docker-compose)

Network Connectivity Requirements: -
• Outing TCP Port 443 to in-cloud.appsentinels.ai or in-cloud-s.appsentinels.ai (for POC) should

be allowed to send data to the AppSentinels Cloud
• The TCP port range 9002-9007 should be opened for the AppSentinels Sniffer Sensor/Plugin

to send traffic logs to the AppSentinels Controller. The specific port used will depend on the
integration between the Sensor/Plugin and the AppSentinels Controller.

5 | Proprietary and confidential Information ©2024, AppSentinels.ai

• Access to *.docker.io to download the Docker images. If *.docker.io can’t be allowed, access
has to be provided to the following domains

 docker.io

 auth.docker.io

 registry-1.docker.io

 production.cloudflare.docker.com

3. Deployment Options

1. Docker-compose
Deploy AppSentinels Edge Controller as docker container by updating the below YAML with
values specific to application environment.

version: "3.3"

services:

 ng-edge-controller:

 container_name: ng-edge-controller

 restart: on-failure:5

 image: appsentinels/ng-controller:latest

 hostname: ng-edge-controller-1

 environment:

 - APPLICATION_DOMAIN=<your-app-domain> # Add the name of application or application group, probably something to

 # denote a bunch of apps

 - ENVIRONMENT=<environment> # Current environment, qa va dev vs prod vs staging

 - SAAS_SERVER_NAME=<your allocated saas server> # Hostname of allocated saas server

 - SAAS_API_KEY_VALUE=<your provided api key> # AppSentinels provided API key for communication to saas

 ports:

 - "9004:9004" # default for merged logs, but will depend on sensor

 # 9002:9002 for sensors like envoy

 # 9004:9004 for merged log sensors (eg: kong, lambda,

sniffer)

 # 9006:9006 for sensors like nginx or apigee

 - HTTPS_INSECURE_SKIP_VERIFY=false # input needed here, set to true if

 # using self signed certs for onprem deployments

 logging:

 driver: local

 options:

 max-size: 10m

 volumes:

 - /var/crash/:/var/crash

Reference spec: https://sample-config.appsentinels.ai/appsentinels-deployment/sample-
docker-compose/docker-compose-kong.yaml

Secure Logging:

Edge Controller can communicate to sensors over HTTPS. To configure this, controller will
need to be provided with server certificate and private key. These can be mounted at
locations /certs/server.crt and /certs/server.key respectively.

https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-kong.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-kong.yaml

6 | Proprietary and confidential Information ©2024, AppSentinels.ai

 ng-edge-controller:

....

 volumes:

 - ./server_public.pem:/certs/server.crt

 - ./server_private.pem:/certs/server.key

2. Installation script

AppSentinels Edge controller can also be deployed in a zero touch manner on VM instances.
AppSentinels provides an installation script that can be inserted into during the first launch of
the instance. This script installs the AppSentinels Edge Controller service on Ubuntu, Amazon
Linux or RHEL/CentOS along with necessary utils like docker (if not present).

If inserting during first run is not feasible, this script can run in a standalone fashion as well.

2.1 AWS EC2 support

AWS provides for user data configuration during AMI launch. AppSentinels installation script
can be inserted here. This allows for installation of required tools or packages during the first
boot of an AMI.

2.2 Script Configuration:

Depending on the deployment and the application running, the following basic configurations
will need to be done.

CONTAINER_NAME="appsentinels-edge-controller" #input needed here

HOSTNAME=$(hostname) #input needed here, needs to be unique across all the edge

controllers

APPLICATION_DOMAIN="<your application domain>" #input needed here, probably something to denote a bunch of apps

ENVIRONMENT="prod" #input needed here, what is the current environment, qa vs prod vs

dev etc

SAAS_SERVER_NAME="<your allocated saas server>" #input needed here

SAAS_API_KEY_VALUE="<AppSentinels provided API key>" #input needed here

CONTAINER_PORT_MAPPING="9004:9004" #input needed here, default for merged logs, but will depend on

sensor

 # 9002:9002 for req and resp logging sensors like envoy

 # 9004:9004 for merged log sensors (eg: kong, lambda, sniffer)

 # 9006:9006 for req/resp logging sensors (eg: nginx, apigee)

HTTPS_INSECURE_SKIP_VERIFY="false" #input needed here, set to true if using self signed certs

 #for SAAS

Script Location:
https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-
appsentinels-controller.sh

https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-appsentinels-controller.sh
https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-appsentinels-controller.sh
https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-appsentinels-controller.sh

7 | Proprietary and confidential Information ©2024, AppSentinels.ai

3. Kubernetes service
AppSentinels controller can also be run as a Kubernetes service. The service requires the

environmental variables to be defined as in earlier section (i.e in docker-compose). In

addition, a container port(s) specific to sensors will need to be opened up.

Below is one such example of a spec where controller is running as a deployment.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 io.kompose.service: appsentinels-controller

 name: appsentinels-controller

 namespace: appsentinels

spec:

 replicas: 1

 selector:

 matchLabels:

 io.kompose.service: appsentinels-controller

 strategy:

 type: Recreate

 template:

 metadata:

 labels:

 app: appsentinels-controller

 io.kompose.service: appsentinels-controller

 spec:

 # ###

 # Start of properties of appsentinels controller container

 containers:

 - env:

 - name: SAAS_SERVER_NAME

 value: <your allocated saas server hostname>

 - name: SAAS_API_KEY_VALUE

 value: <Your API key>

 - name: APPLICATION_DOMAIN

 value: <Your app domain>

 - name: ENVIRONMENT

 value: <Your environment>

 image: appsentinels/ng-controller:latest

 imagePullPolicy: IfNotPresent

 name: appsentinels-controller

 ports:

 - containerPort: <sensor specific port>

 resources:

 requests:

 cpu: 4

 memory: 8Gi

 limits:

 cpu: 4

 memory: 16Gi

 hostname: appsentinels-controller # This is mandatory

 # end of properties of appsentinels controller container

 # ###

 restartPolicy: Always

8 | Proprietary and confidential Information ©2024, AppSentinels.ai

 serviceAccountName: ""

 dnsPolicy: "None"

 dnsConfig:

 nameservers:

 - 8.8.8.8 #UPDATE REQUIRED

status: {}

Reference spec:

https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-

controller.yaml

There are other modes of deployment in Kubernetes and can be realized based on the needs.

Please get in touch with AppSentinels support team to take it forward.

4. Horizontally Scaled Deployment

To ensure high availability, scalability, and resilience, AppSentinels Edge Controllers can be
deployed in a horizontally scaled architecture.

Architecture Overview

In a horizontally scaled deployment, multiple AppSentinels Edge Controllers are deployed in

a stateless fashion behind a session-aware load balancer or ingress controller. This

architecture allows the system to handle increased throughput and user sessions reliably.

https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-controller.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-controller.yaml

9 | Proprietary and confidential Information ©2024, AppSentinels.ai

Key Characteristics

- Controllers are identical in terms of resources and policy configuration.

- Stateless design necessitates session stickiness to maintain user context.

- Session stickiness is enforced via user session information available in headers (such as
XFF, authorization header etc)

- Horizontal scaling is achieved via Kubernetes Deployments.

- Deployment is compatible with both Out-of-Band (OOB) and enforcement modes.

Request Flow

1. Clients send traffic to a CDN, WAF, proxy or gateway configured with AppSentinels Sensors.

2. Sensors capture HTTP API traffic and forward logs to an Ingress Controller over HTTPS.
Sensors also capture session information in X-As-Queue-Hash header.

3. The Ingress Controller uses session-specific information (X-As-Queue-Hash) to enforce
sticky routing, ensuring logs from the same user or session are routed to the same Edge
Controller instance.

4. Each Edge Controller processes the logs and performs analysis and enforcement as needed.

Edge Controller Load Balancer Requirements

- Must support session stickiness based on headers. A session-aware ingress controller/load
balancer (e.g., NGINX Ingress with nginx.ingress.kubernetes.io/upstream-hash-by) is
mandatory.

- Can be a standard load balancer or a Kubernetes ingress controller with session-affinity
annotations.

- Should health-check each controller instance to prevent routing to unhealthy nodes.

Sample Configuration
To configure NGINX Ingress Controller to perform session stickiness (hash-based load
balancing) using the X-As-Queue-Hash header, you use the annotation:

nginx.ingress.kubernetes.io/upstream-hash-by: "$http_x_as_queue_hash"

The above annotation tells NGINX to hash the value of the X-As-Queue-Hash header to
determine backend selection.

10 | Proprietary and confidential Information ©2024, AppSentinels.ai

This ensures all requests with the same X-As-Queue-Hash value go to the same controller
pod, preserving context and log correlation even in a stateless horizontally scaled
environment.

5. Verify Deployment

AppSentinels Edge Controllers deployed in your environment will be listed on the System
Health page on AppSentinels Dashboard.

Generate application traffic in the monitored application and check the API catalogue on
AppSentinels Dashboard for the discovered APIs.

	1. Introduction
	2. Pre-requisites
	3. Deployment Options
	1. Docker-compose
	Secure Logging:

	2. Installation script
	2.1 AWS EC2 support
	2.2 Script Configuration:

	3. Kubernetes service

	4. Horizontally Scaled Deployment
	Architecture Overview
	Key Characteristics
	Request Flow
	Edge Controller Load Balancer Requirements
	Sample Configuration

	5. Verify Deployment

