1]

E]E AppSentinels.ai

Application Security Re-invented

AppSentinels Edge Controller Pre-
Requisites & Deployment

Proprietary and confidential Information ©2024, AppSentinels.ai

E]E AppSentinels.ai

Application Security Re-invented

Contents
N [014 o o I3 T o o TP UPPRPP 4
D o (- = To UYL {1 OO PP PT PO PPPPUPPPRRIINt 4
Operating System and Hardware ReqUIrE€mMENTS: -cccuiieiiiiiieeiiiee et esree e eree e svre e e svae e e e e e saeeas 4
Yol T T Y=Y [V 1T Yo Eo SRRSOt 4
Network Connectivity REQUITEMENTS: —...ccii ittt e e e e e e tree e e e e e e s nrte e e e e e e esnnraeeeeeseennnnnns 4
S B 7o) (oY o 1T o A @ 4T o - PRSP UP 5
B B To Yo (=] et ole 0 Y o o] < PP 5
SECUNE LOBING: i 5
N [0 1 71 =T o oI5 ol T | SRR 6
B N YA = 0 U o o Yo o R USTNt 6
2.2 SCript CoNfIgUIAtION:uiiiieee e e e e e e e rara e e e e e nreeeeeans 6
3. Kubernetes service 7
4. Horizontally Scaled DeploymMENT.......cuiii it e e e see e s srre e e e ebae e e e e e s ares 8
ArChItECEUIE OVEIVIEW ...ttt sttt sttt et et e st sar e e bt et e e teenneenneeas 8
Y O T 1= Lot €= T o ok USRI 9
200 LU =T o L YRR 9
Edge Controller Load Balancer REQUINEMENTS........ciiiiieeiiiiiieeiieeecree e e e e e e e e e e svae e e sneeas 9
RFYa] o] LI @oT o) {7 ={U L= 4[] o TSR 9
L o1 VA D T<Y o1 1o 1Y o =T o | SRR 10

2| Proprietary and confidential Information ©2024, AppSentinels.ai

E]E AppSentinels.ai

Application Security Re-invented

Revision | Date Modified | Author | Comments

1.0 08-Dec-23 Initial Draft

1.1 01-Aug-24 Sachin | Created consolidated controller deployment
document

1.2 12-Jun-2025 Sachin | Horizontal scaling

3] Proprietary and confidential Information ©2024, AppSentinels.ai

E]E AppSentinels.ai

Application Security Re-invented

1. Introduction

AppSentinels Edge Controller processes the API traffic data received from the Sensor and
forwards the meta data to the Cloud Platform for Al/ML processing. The Edge Controller
detects the Security Events and takes preventive action using Firewall/API GW.

AppSentinels
Edge Controller

Meta Data

AppSentinels
Saas

AppSentinels
Sensor

R

API's
Application

2. Pre-requisites

Operating System and Hardware Requirements: -
e Operating System: Ubuntu 22.04 or REDHAT 8.6

CPU: 4 cores x86_64*

RAM: 16G of RAM*

50 GB free disk space in /var partition

* CPU & Memory requirement will change based on API traffic rate and models enabled for detection. Approximately, a
single core of controller will allow for ingesting of 500-1000 API logs per second. The above number will serve
between 2000 to 4000 API logs per second.
Packages Required: -

e docker version 23.0 or higher

e docker-compose version 1.28.6 or higher (if deploying with docker-compose)

Network Connectivity Requirements: -
e Quting TCP Port 443 to in-cloud.appsentinels.ai or in-cloud-s.appsentinels.ai (for POC) should
be allowed to send data to the AppSentinels Cloud
e The TCP port range 9002-9007 should be opened for the AppSentinels Sniffer Sensor/Plugin
to send traffic logs to the AppSentinels Controller. The specific port used will depend on the
integration between the Sensor/Plugin and the AppSentinels Controller.

4| Proprietary and confidential Information ©2024, AppSentinels.ai

QE AppSentinels.ai

Application Security Re-invented

e Access to *.docker.io to download the Docker images. If *.docker.io can’t be allowed, access
has to be provided to the following domains
o docker.io
o auth.docker.io
o registry-1.docker.io
o production.cloudflare.docker.com

3. Deployment Options

1. Docker-compose

Deploy AppSentinels Edge Controller as docker container by updating the below YAML with
values specific to application environment.

version: "3.3"
services:
ng-edge-controller:
container_name: ng-edge-controller
restart: on-failure:5
image: appsentinels/ng-controller:latest
hostname: ng-edge-controller-1

environment:

APPLICATION_DOMAIN=<your-app-domain> # Add the name of application or application group, probably something to

denote a bunch of apps
ENVIRONMENT=<environment> # Current environment, ga va dev vs prod vs staging
SAAS_SERVER_NAME=<your allocated saas server> # Hostname of allocated saas server
SAAS_API_KEY_VALUE=<your provided api key> # AppSentinels provided API key for communication to saas
ports:
- "9004:9004" # default for merged logs, but will depend on sensor
9002:9002 for sensors like envoy
9004:9004 for merged log sensors (eg: kong, lambda,
sniffer)
9006:9006 for sensors like nginx or apigee
- HTTPS_INSECURE_SKIP_VERIFY=false # input needed here, set to true if

using self signed certs for onprem deployments

logging:
driver: local
options:
max-size: 10m

volumes:

- /var/crash/:/var/crash

Reference spec: https://sample-config.appsentinels.ai/appsentinels-deployment/sample-
docker-compose/docker-compose-kong.yaml

Secure Logging:
Edge Controller can communicate to sensors over HTTPS. To configure this, controller will

need to be provided with server certificate and private key. These can be mounted at
locations /certs/server.crt and /certs/server.key respectively.

5] Proprietary and confidential Information ©2024, AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-kong.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-kong.yaml

QE AppSentinels.ai

Application Security Re-invented

ng-edge-controller:

volumes:

- ./server_public.pem:/certs/server.crt

- ./server_private.pem:/certs/server.key

2. Installation script

AppSentinels Edge controller can also be deployed in a zero touch manner on VM instances.
AppSentinels provides an installation script that can be inserted into during the first launch of
the instance. This script installs the AppSentinels Edge Controller service on Ubuntu, Amazon
Linux or RHEL/CentOS along with necessary utils like docker (if not present).

If inserting during first run is not feasible, this script can run in a standalone fashion as well.

2.1 AWS EC2 support

AWS provides for user data configuration during AMI launch. AppSentinels installation script
can be inserted here. This allows for installation of required tools or packages during the first
boot of an AMI.

2.2 Script Configuration:

Depending on the deployment and the application running, the following basic configurations
will need to be done.

CONTAINER_NAME="appsentinels-edge-controller" #input needed here
HOSTNAME=$ (hostname) #input needed here, needs to be unique across all the edge
controllers
APPLICATION_DOMAIN="<your application domain>" #input needed here, probably something to denote a bunch of apps
ENVIRONMENT="prod" #input needed here, what is the current environment, ga vs prod vs
dev etc
SAAS_SERVER_NAME="<your allocated saas server>" #input needed here
SAAS_API_KEY_VALUE="<AppSentinels provided API key>" #input needed here
CONTAINER_PORT_MAPPING="9004:9004" #input needed here, default for merged logs, but will depend on
sensor
9002:9002 for req and resp logging sensors like envoy
9004:9004 for merged log sensors (eg: kong, lambda, sniffer)
9006:9006 for req/resp logging sensors (eg: nginx, apigee)

HTTPS_INSECURE_SKIP_VERIFY="false" #input needed here, set to true if using self signed certs

#for SAAS

Script Location:
https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-
appsentinels-controller.sh

6 | Proprietary and confidential Information ©2024, AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-appsentinels-controller.sh
https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-appsentinels-controller.sh
https://sample-config.appsentinels.ai/appsentinels-deployment/edge-controller/install-appsentinels-controller.sh

ﬂ 1 AppSentinels.ai

Application Security Re-invented

3. Kubernetes service
AppSentinels controller can also be run as a Kubernetes service. The service requires the
environmental variables to be defined as in earlier section (i.e in docker-compose). In

addition, a container port(s) specific to sensors will need to be opened up.

Below is one such example of a spec where controller is running as a deployment.

apiVersion: apps/vil
kind: Deployment
metadata:
labels:
io.kompose.service: appsentinels-controller
name: appsentinels-controller
namespace: appsentinels
spec:
replicas: 1
selector:
matchLabels:
io.kompose.service: appsentinels-controller
strategy:
type: Recreate
template:
metadata:
labels:
app: appsentinels-controller
io.kompose.service: appsentinels-controller
spec:
R e e e R e e e e R
Start of properties of appsentinels controller container
containers:
- env:
- name: SAAS_SERVER_NAME
value: <your allocated saas server hostname>
name: SAAS_API_KEY_VALUE
value: <Your API key>
name: APPLICATION_DOMAIN
value: <Your app domain>
name: ENVIRONMENT
value: <Your environment>
image: appsentinels/ng-controller:latest
imagePullPolicy: IfNotPresent
name: appsentinels-controller
ports:
- containerPort: <sensor specific port>
resources:
requests:
cpu: 4
memory :
limits:
cpu: 4
memory: 16Gi
hostname: appsentinels-controller # This is mandatory
end of properties of appsentinels controller container
b L e B P L R
restartPolicy: Always

Proprietary and confidential Information ©2024, AppSentinels.ai

HE AppSentinels.ai

Application Security Re-invented

serviceAccountName: ""
dnsPolicy: "None"
dnsConfig:

nameservers:
- 8.8.8.8 #UPDATE REQUIRED
status: {}

Reference spec:

https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-

controller.yaml

There are other modes of deployment in Kubernetes and can be realized based on the needs.
Please get in touch with AppSentinels support team to take it forward.

4. Horizontally Scaled Deployment

To ensure high availability, scalability, and resilience, AppSentinels Edge Controllers can be
deployed in a horizontally scaled architecture.

Architecture Overview

AppSentinels AppSentinels AppSentinels AppSentinels
Edge Controller 1 Edge Controller 2 Edge Controller 3 Edge Controllern

999

i

1

1

! —

1 =

! /‘ N
1 \
! -

! Meta Data AppSentinels
1 SaasS

1

1

1

1

1

1

. V.

1
Load Balarcer |
{withsession 1
awareness) :
1

i :

I 1
. i i : i i :
| Client | ol | —p! @ i
I] APl's I (',', VHTTP 1] : I
i 1 ! s] ! | !

1 [1 1

: 1

1

In a horizontally scaled deployment, multiple AppSentinels Edge Controllers are deployed in
a stateless fashion behind a session-aware load balancer or ingress controller. This
architecture allows the system to handle increased throughput and user sessions reliably.

R ——
8| Proprietary and confidential Information ©2024, AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-controller.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-controller.yaml

E]E AppSentinels.ai

Application Security Re-invented

Key Characteristics

- Controllers are identical in terms of resources and policy configuration.
- Stateless design necessitates session stickiness to maintain user context.

- Session stickiness is enforced via user session information available in headers (such as
XFF, authorization header etc)

- Horizontal scaling is achieved via Kubernetes Deployments.

- Deployment is compatible with both Out-of-Band (OOB) and enforcement modes.

Request Flow
1. Clients send traffic to a CDN, WAF, proxy or gateway configured with AppSentinels Sensors.

2. Sensors capture HTTP API traffic and forward logs to an Ingress Controller over HTTPS.
Sensors also capture session information in X-As-Queue-Hash header.

3. The Ingress Controller uses session-specific information (X-As-Queue-Hash) to enforce
sticky routing, ensuring logs from the same user or session are routed to the same Edge
Controller instance.

4. Each Edge Controller processes the logs and performs analysis and enforcement as needed.

Edge Controller Load Balancer Requirements

- Must support session stickiness based on headers. A session-aware ingress controller/load
balancer (e.g., NGINX Ingress with nginx.ingress.kubernetes.io/upstream-hash-by) is
mandatory.

- Can be a standard load balancer or a Kubernetes ingress controller with session-affinity
annotations.

- Should health-check each controller instance to prevent routing to unhealthy nodes.

Sample Configuration
To configure NGINX Ingress Controller to perform session stickiness (hash-based load
balancing) using the X-As-Queue-Hash header, you use the annotation:

nginx.ingress.kubernetes.io/upstream-hash-by: "$http_x_as_queue_hash"

The above annotation tells NGINX to hash the value of the X-As-Queue-Hash header to
determine backend selection.

9| Proprietary and confidential Information ©2024, AppSentinels.ai

E]E AppSentinels.ai

Application Security Re-invented

This ensures all requests with the same X-As-Queue-Hash value go to the same controller

pod, preserving context and log correlation even in a stateless horizontally scaled
environment.

5. Verify Deployment

AppSentinels Edge Controllers deployed in your environment will be listed on the System
Health page on AppSentinels Dashboard.

Generate application traffic in the monitored application and check the API catalogue on
AppSentinels Dashboard for the discovered APIs.

10 | Proprietary and confidential Information ©2024, AppSentinels.ai

	1. Introduction
	2. Pre-requisites
	3. Deployment Options
	1. Docker-compose
	Secure Logging:

	2. Installation script
	2.1 AWS EC2 support
	2.2 Script Configuration:

	3. Kubernetes service

	4. Horizontally Scaled Deployment
	Architecture Overview
	Key Characteristics
	Request Flow
	Edge Controller Load Balancer Requirements
	Sample Configuration

	5. Verify Deployment

