

1 | Proprietary and confidential Information ©2025, AppSentinels.ai

AppSentinels API Security Platform
SSL Sniffer Deployment (eBPF)

2 | Proprietary and confidential Information ©2025, AppSentinels.ai

Table of Contents

Table of Contents ... 2

Introduction ... 4

Deployment ... 4

ECS Deployment - Topology .. 4

Configurations ... 5

Procedure .. 5

Sample task definition .. 6

Kubernetes Daemon Set Sniffer .. 7

Configurations ... 7

RBAC (Role-Based Access Control).. 7

Procedure .. 8

Ingress controller Sniffer ... 8

Configurations ... 8

Procedure .. 8

Host based sniffer .. 8

Configurations ... 9

Procedure .. 9

Verify Deployment ... 9

3 | Proprietary and confidential Information ©2025, AppSentinels.ai

Revision Date Modified Author Comments

1.0 17-Nov-24 Sachin Desai Initial Draft

1.1 20-Mar-25 Sachin Desai RHEL baremetal support

1.2 01-Apr-25 Sachin Desai Kubernetes Daemonset

1.3 09-May-25 Sachin Desai Ingress controller sniffing update

4 | Proprietary and confidential Information ©2025, AppSentinels.ai

Introduction

AppSentinels SSLSniffer Sensor deployment is Out-Of-Band deployment mode, without any
modification required in the application configuration and application environment.

AppSentinels SSLSniffer Sensor (called sensor henceforth) can be deployed along side
Application instances. This type of sensor is specially useful for deployments where there
exists end to end HTTPS encryption of API traffic.

The Sniffer Sensor uses eBPF mechanism to capture the HTTPS traffic and forwards the API
traffic to the AppSentinels Edge Controller (called controller henceforth).

To take preventive action against Security Events and Threat Actors requires integration of
Firewall or API Gateway with AppSentinels API Security Platform since this deployment is in
Out-Of-Band mode.

Deployment

ECS Deployment - Topology

5 | Proprietary and confidential Information ©2025, AppSentinels.ai

SSLSniffer should be deployed alongside ECS containers in a daemon mode (single instance
per EC2 VM). The container will monitor processes running in containers (or select containers)
and record plain text API request and responses before they are encrypted for SSL.

Once the API log is formed at the SSLSniffer, it will be logged over to the edge controller over
HTTP or HTTPS.

Configurations

Environment Default Description

REMOTE_CONTROLLER_SERVER_ENDPOINT - Edge controller endpoint with scheme, host and path. Eg:
https://edge-controller:9004/mergedlog

INSTANCE_NAME Unknown Instance name for visibility. Useful to identify sensors on
the dashboard, mention something meaningful here

SSLSNIFF_CONTAINER_INCLUDE_FILTER - By default all the containers are monitored, but specify
only particular container through this regex

SSLSNIFF_CONTAINER_EXCLUDE_FILTER - Exclude any container from monitoring by this regex

DOCKER_API_VERSION - Compatibility environment variable (if required). This
should be the max supported version by the docker
daemon on ECS. This can be gotten from the output of,
`docker version | grep API`

LOGGING_LEVEL info sniffer logging level. Set among trace|debug|info|error

CUSTOM_LIBSSL_1_PATH
CUSTOM_LIBSSL_3_PATH

- Define non-default openssl ver 1/3 lib paths, reference is
debian paths by default.

Example for RHEL,

CUSTOM_LIBSSL_1_PATH=/usr/lib64/libssl.so.1.1.1k

Procedure
1. Create a task definition for sslsniffer

a) Populate the required environmental variables as above
b) Provide the right mounts,

i. Docker daemon interface via mount of /var/run/docker.sock
ii. Capabilities of “SYS_ADMIN” and “SYS_PTRACE”
iii. Process space of host via pidMode=host
iv. Privilege mode of execution via privileged=true needed for host equivalent

access
2. Create another service of type DAEMON under the cluster to be monitored

Reference task definition:
https://sample-config.appsentinels.ai/appsentinels-deployment/aws-ecs/sslsniffer-daemon-
ecs-task-def.json

Note

• Please note that older Linux kernels (<5.10) do not have complete support for eBPF
tracing by default. It is recommended to use 5.10+

https://sample-config.appsentinels.ai/appsentinels-deployment/aws-ecs/sslsniffer-daemon-ecs-task-def.json
https://sample-config.appsentinels.ai/appsentinels-deployment/aws-ecs/sslsniffer-daemon-ecs-task-def.json

6 | Proprietary and confidential Information ©2025, AppSentinels.ai

• eBPF based sniffers cannot be supported on FARGATE due to runtime restrictions.

Sample task definition

{

 "containerDefinitions": [

 {

 "name": "sniffer",

 "image": "appsentinels/sslsniffer:latest",

 "essential": true,

 "environment": [

 {

 "name": "REMOTE_CONTROLLER_SERVER_ENDPOINT",

 "value": "https://edge-controller:9004/mergedlog"

 },

 {

 "name": "DOCKER_API_VERSION",

 "value": "1.44"

 },

 {

 "name": "INSTANCE_NAME",

 "value": "http-app"

 }

],

 "mountPoints": [

 {

 "sourceVolume": "docker-socket",

 "containerPath": "/var/run/docker.sock",

 "readOnly": false

 }

],

 "linuxParameters": {

 "capabilities": {

 "add": [

 "SYS_ADMIN",

 "SYS_PTRACE"

],

 "drop": []

 }

 },

 "privileged": true,

 "logConfiguration": {

 "logDriver": "awslogs",

 "options": {

 "awslogs-group": "/ecs/sslsniffer-daemon",

 "mode": "non-blocking",

 "awslogs-create-group": "true",

 "max-buffer-size": "25m",

 }

 },

 "systemControls": []

 }

],

 "volumes": [

 {

 "name": "docker-socket",

 "host": {

 "sourcePath": "/var/run/docker.sock"

 }

 }

],

 "pidMode": "host",

}

7 | Proprietary and confidential Information ©2025, AppSentinels.ai

Kubernetes Daemon Set Sniffer
Similar to EC2 daemonset, the SSL sniffer can deployed as a daemon set onto any

kubernetes cluster.

Configurations

Environment Default Description

REMOTE_CONTROLLER_SERVER_ENDPOINT - Edge controller endpoint with scheme, host and path. Eg:
https://edge-controller:9004/mergedlog

INSTANCE_NAME Unknown Instance name for visibility. Useful to identify sensors on
the dashboard, mention something meaningful here

SSLSNIFF_CONTAINER_INCLUDE_FILTER - By default all the containers are monitored, but specify
only particular container through this regex

SSLSNIFF_CONTAINER_EXCLUDE_FILTER - Exclude any container from monitoring by this regex

DOCKER_API_VERSION - Compatibility environment variable (if required). This
should be the max supported version by the docker
daemon on ECS. This can be gotten from the output of,
`docker version | grep API`

LOGGING_LEVEL info sniffer logging level. Set among trace|debug|info|error

CUSTOM_LIBSSL_1_PATH
CUSTOM_LIBSSL_3_PATH

- Define non-default openssl ver 1/3 lib paths, reference is
debian paths by default.

Example for RHEL,

CUSTOM_LIBSSL_1_PATH=/usr/lib64/libssl.so.1.1.1k

Reference Spec:
https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/k8/sniffer-
daemonset.yaml

RBAC (Role-Based Access Control)
For sniffer to scan the properties of pods, it requires the correct accesses.

1. ServiceAccount (sslsniffer-sa)
SSL sniffer will use this service account to interact with the Kubernetes API securely.
It’s needed if your app wants to list pods, etc.

2. ClusterRole (sslsniffer-role)

This will defines what actions the service account can perform. It gives read-only
access (get/list/watch) to:

• pods, pods/status, pods/log – to inspect and monitor pods

• nodes – possibly for identifying host-level details

• services – to correlate endpoints

• events – to react to what's happening in the cluster

• apps resources – like daemonsets, deployments, replicasets, statefulsets (to
watch application deployments)

https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/k8/sniffer-daemonset.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/k8/sniffer-daemonset.yaml

8 | Proprietary and confidential Information ©2025, AppSentinels.ai

3. RoleBinding (sslsniffer-role-binding)
This connects the service account to the cluster role for the ssl sniffer.

All the above properties can be referenced in the below link:
https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/k8/role.yaml

Procedure

1. Create service account and configure the RBAC
2. Deploy the daemonset using the above spec
3. If required configure the filters for specific pod sniffing

Ingress controller Sniffer
Based on deployment, it is efficient to sniff on the ingress controller instead of all the
application PODs. This provides for a single point of contact. The below configuration and
procedure ensure that the sniffer daemon set is deployed only on nodes that ingress
controller POD is scheduled.

Configurations
Same as earlier, but with the below exception of setting this env filter. This will ensure only

ingress POD will be searched for.

env:

- name: SSLSNIFF_CONTAINER_INCLUDE_FILTER
value: "nginx-ingress"

Procedure
Reference Specification: https://sample-config.appsentinels.ai/appsentinels-
deployment/sslsniffer/k8/sniffer-daemonset-ingress.yaml

1. Create the service account and provide permissions as earlier
2. Please note down the label used for deploying ingress controller. This can be figured

from the below command, or equivalent,

kubectl get pods -n ingress -l app.kubernetes.io/name=ingress-nginx --show-labels

3. Update the ingress label under

affinity.podAffinity.requiredDuringSchedulingIgnoredDuringExecution.labelSelector of the
reference specification

4. Update the namespace selector for the affinity configuration to the namespace ingress is
running on. This can be updated at,
Affinity.podAffinity.requiredDuringSchedulingIgnoredDuringExecution.namespaceSelector

5. Apply the daemonset specification to deploy

Host based sniffer
SSL sniffer can be deployed directly on host (compared to a container) to sniff traffic of host
processes.

https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/k8/role.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/k8/sniffer-daemonset-ingress.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/k8/sniffer-daemonset-ingress.yaml

9 | Proprietary and confidential Information ©2025, AppSentinels.ai

Configurations

Environment Default Description

REMOTE_CONTROLLER_SERVER_ENDPOINT - Edge controller endpoint with scheme, host and path. Eg:
https://edge-controller:9004/mergedlog

INSTANCE_NAME Unknown Instance name for visibility. Useful to identify sensors on
the dashboard, mention something meaningful here

SSLSNIFF_INCLUDE_PROC_FILTER - By default all the host processing are attempted to be
monitored, but specify fine tune this selection based on
this regex

SSLSNIFF_EXCLUDE_PROC_FILTER

- Exclude any process from monitoring by this regex

SNIFF_LOCAL_ONLY

- Set this to “true” to enable host sniffing

LOGGING_LEVEL info sniffer logging level. Set among trace|debug|info|error

CUSTOM_LIBSSL_1_PATH
CUSTOM_LIBSSL_3_PATH

- Define non-default openssl ver 1/3 lib paths, reference is
debian paths by default.

Example for RHEL,

CUSTOM_LIBSSL_1_PATH=/usr/lib64/libssl.so.1.1.1k

Procedure
For RHEL, rpm is provided here,
https://sample-config.appsentinels.ai/appsentinels-
deployment/sslsniffer/redhat/appsentinels-sslsniffer-1.0.1-1.x86_64.rpm

1. Install the rpm
2. The service ‘appsentinels-sslsniffer’ will be started by default
3. Perform fine tuning via environmentals by updating

/etc/sysconfig/appsentinels-sslsniffer
4. Restart the service post updating

 systemctl restart appsentinels-sslsniffer.service

Verify Deployment

1. Please verify if the daemon container is running correctly
2. If traffic is being sniffed correctly, the sensor should be visible on the dashboard under
sensors

https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/redhat/appsentinels-sslsniffer-1.0.1-1.x86_64.rpm
https://sample-config.appsentinels.ai/appsentinels-deployment/sslsniffer/redhat/appsentinels-sslsniffer-1.0.1-1.x86_64.rpm

	Table of Contents
	Introduction
	Deployment
	ECS Deployment - Topology
	Kubernetes Daemon Set Sniffer
	RBAC (Role-Based Access Control)

	Ingress controller Sniffer
	Host based sniffer
	Verify Deployment

