QE AppSentinels.ai

Application Security Re-invented

AppSentinels AP| Security Platform

Front Proxy Deployment

1] Proprietary and confidential Information ©2024, AppSentinels.ai

GB AppSentinels.ai

Application Security Re-invented

Contents
1. INEFOTUCTION ittt st s bt e s bt e s bt e s be e sae e sae e saeesatesmeesmeesaeesanesanenas 4
2. DEPIOYMENT OPLIONS ...ttt ettt ettt b e s bt e sbe e sbe e s bt e s bt e sbeesaeesheesbeesatesatesmeesaeesatesanenas 5
2.1 Deployment USING DOCKEISciiuuieiiie ettt ettt ettt s be e e st e e sae e e saee e sabeesabeeebeeesnneesnneesareesneesnne 5
2.1.1 Configuration via environmental variables..........occvviiieeei e 5
2.1.2 Starting froNt ProXy SEIVICEuuiiiie ittt e rrre e e e e e e e e eartre e e e e e e e eenanes 6
2.2 Upstream MTLS dePlOoyMENt......ci ittt ettt et e e e st te e e s sabe e e e sbteeesataeeesnsaeeesansaeessnseeeesnnes 6
2.3 DOWNStream MTLS dePIOYMENT.......iiiiiiiie ettt e et e e et e e e e st e e e e e bteeessstaeessnbaeeesastaeessnseeaesnnes 7
Y=ol U TN I} 1= 4o ¥ - U, 7
2.5 KIESWIECR ettt st e s e st e s bt e e bt e e sa st e s ate e s beesabeeeabeeeaneeesnneesareesreeeane 7
PRCW o AV ol=To Moo T o} iT={UT o 4 o] o - PSPPI 7
B Sl =L ORI YU o] oL o A PPN 8
2.6.1 ECS ON EC2 .o e s s e e e e e e e e e e e e e 8
G ST A o 1 = | I 9
€ YT LYot T g U o o o A PSP 11
3. RV LT LV D=] o371 41T o | USSR 12
2 Proprietary and confidential Information ©2024, AppSentinels.ai

GE AppSentinels.ai

Application Security Re-invented

Revision | Date Modified | Author | Comments

1.0 02-Jan-24 Sachin | Initial Draft

1.1 24-Oct-24 Sachin | Further explanations for TLS and mTLS
1.2 11-Oct-24 Sachin | Side car proxy support, ECS examples
1.3 04-Mar-25 Sachin | mTLS for K8 sidecar

3] Proprietary and confidential Information ©2024, AppSentinels.ai

GB AppSentinels.ai

Application Security Re-invented

1. Introduction

AppSentinels provides a front proxy to integrate with your existing deployments. This deployment
serves cases of

1. Monolith application/service requiring AppSentinels inspection

2. Endto end encrypted systems requiring a point of inspection

The front proxy has the capability to terminate SSL traffic and re-encrypt the upstream traffic.

AppSentinels
Edge Controller

Meta Data

ol .
% >

Appsentinels.
Saas

1

1
1

: ! I

I ! - = , " !

I | : - I I @ :

! 1 - —

! HTTP/5: TTTTTT | ;

]

: |
1

|
I

Application [, Database
|

i
1
\4

— . .

API's

1

1
AppSentinels 1
Front Proxy :

——m e ——————— 4

Figure 1 Front proxy deployment with AppSentinels

1. AppSentinels front proxy gets HTTP/HTTPS traffic and forward the logs to AppSentinels Edge
Controller for security processing.

2. Modules support two modes configurable via a knob Out-of-Band(OOB)/Transparent & Service-
chaining/Enforcement. In both modes, AppSentinels process a copy of the packet.

3. In OOB/transparent mode, plugin forwards the packet to the Application and Edge controller
simultaneously. In service-chaining mode, the plugin forwards the packet to Edge Controller and
waits for its output before forwarding the packet to Application. This allows the plugin to enforce
inline action based on response received from Edge Controller.

4. AppSentinels Service-chaining mode has optional max-latency configuration. In case Edge
controller response is delayed and latency crosses configured threshold, plugin gets into fail-open
mode and forwards the packet to Application thereby ensuring availability and responsiveness in
case of a slowness or an outage.

4| Proprietary and confidential Information ©2024, AppSentinels.ai

HE AppSentinels.ai

Application Security Re-invented

2. Deployment Options

Front proxy can be deployed as a container service.

2.1 Deployment using dockers

services:
front-service:
image: appsentinels/front-proxy:latest
env_file:
- ./env/env-envoy.txt
expose:

- ${ENVOY_LISTENING_PORT}
ports:

- "${ENVOY_EXTERNAL_DATA LISTENING_PORT}:${ENVOY_LISTENING_PORT}"
volumes:

- /var/crash:/var/crash

a. The service can be tuned by environment variables that can be passed via env_file
specification
b. By default, the service assumes it will be listening on port 8000, defined by,
a. ENVOY_EXTERNAL_DATA_LISTENING_PORT and
b. ENVOY_LISTENING_PORT

2.1.1 Configuration via environmental variables
The below configurable parameters provide the necessary changes needed for any deployment.

Environmental Config Description Default
ENVOY_SERVICE_NAME Upstream service name or hostname or IP address -
this proxy is front ending
ENVOY_SERVICE_PORT Upstream service listening port -
ENVOY_INSTANCE_NAME Visibility information of this proxy. Provide a unknown
meaningful name for this instance based on
deployment
ENVOY_ON_PREM_CONTROLLER Edge controller’s service name or hostname or IP -
addresses
ENVOY_DOWNSTREAM_TLS_SERVER_CERT Mounted cert location needed for accepting -

downstream TLS requests. If defined along with

ENVOY_DOWNSTREAM_TLS_SERVER_PRIVATE_KEY,

proxy will start accepting TLS client requests
ENVOY_DOWNSTREAM_TLS_SERVER_PRIVATE_KEY Private key for downstream TLS requests -

ENVOY_DOWNSTREAM_TLS_CA_CERT For downstream mTLS, provide trust cert for client -
cert validation. Client cert is validated only if this is
defined

ENVOY_UPSTREAM_TLS Setting to true will enable upstream TLS with no false
server validation

ENVOY_UPSTREAM_TLS_CLIENT_CERT For upstream mTLS, location where client cert -

presented by front proxy is present. This along with
ENVOY_UPSTREAM_TLS_CLIENT_PRIVATE_KEY will
enable upstream TLS

ENVOY_UPSTREAM_TLS_CLIENT_PRIVATE_KEY For upstream mTLS, provide private key -

ENVOY_UPSTREAM_TLS_CA_CERT For upstream mTLS, provide trust cert for upstream -
server validation if ENVOY_UPSTREAM_TLS=true

PROXY_SIDECAR Set to yes for using proxy as a sidecar with no no

changes to application’s external listening port.

5] Proprietary and confidential Information ©2024, AppSentinels.ai

E]B AppSentinels.ai

Application Security Re-invented

Please ensure, ENVOY_LISTENING_PORT is set to any
available port if this option is set to yes

ENVOY_LISTENING_PORT Any available port for envoy to listen on in case of -
proxy sidecar deployment. This is internal to envoy.

Please note that for certificates will need to be mounted at the locations specified via the above
environments.

2.1.2 Starting front proxy service
Provided the above environment variables have been defined in a file called env-envoy.txt, the
following commands can be used to start the front proxy service,

docker-compose -f docker-compose.yaml --env=env/env-envoy.txt up -d

In some versions of docker compose, it will be required to populate environment variables before
starting the service, in which case, please use,

export ENVOY_EXTERNAL_DATA LISTENING PORT=8000; \
export ENVOY_LISTENING_PORT=8000;\
docker-compose -F docker-compose.yaml --env=env/env-envoy.txt up -d

Reference configuration can be found at
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-
compose-monolith.yaml (refer to the front-service)

2.2 Upstream MTLS deployment

Apart from setting the correct environment variables, as below, the certificates and keys will have
to be mounted.

if provided, envoy will start a TLS server downstream, otherwise plain text
ENVOY_DOWNSTREAM_TLS_SERVER_CERT=/etc/server_public.crt
ENVOY_DOWNSTREAM TLS_SERVER_PRIVATE_KEY=/etc/server_private.key

#upstream tls true doesnt mean mTLS, for mTLS we need to provide cert and key
ENVOY_UPSTREAM_TLS=true

server validation is performed if this is provided, by default no server validation is done
ENVOY_UPSTREAM_TLS_CA_CERT=/etc/ssl/certs/ca-certificates.crt

client cert and key for upstream TLS
ENVOY_UPSTREAM_TLS_CLIENT_CERT=/etc/client_cert.crt
ENVOY_UPSTREAM_TLS_CLIENT_PRIVATE_KEY=/etc/client_private.key

Mounting of the certificates can be done using docker-compose as below,

services:
front-service:
image: appsentinels/front-proxy:latest
env_file:

- ./env/env-envoy.txt

6| Proprietary and confidential Information ©2024, AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-monolith.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-monolith.yaml

E]B AppSentinels.ai

Application Security Re-invented

expose:
- ${ENVOY_LISTENING_PORT}
ports:
- "${ENVOY_EXTERNAL_DATA LISTENING_PORT}:${ENVOY_LISTENING_ PORT}"
volumes:
- /var/crash:/var/crash

- ./server_public.pem:/etc/server_public.crt # downstream TLS cert
./server_private.pem:/etc/server_private.key # downstream TLS key

./server_public.pem:/etc/client_cert.crt # client cert to server
- ./server_private.pem:/etc/client_private.key # client key
./externalenvoy.yaml:/tmp/envoy.yaml

In the above example, front proxy uses the same set of keys and certs for upstream and downstream.
Please do change this based on deployment.

For server validation, CA cert (pointed by ENVOY_UPSTREAM _TLS CA_CERT) can be system cert or a
custom like. In case of custom, the same should be mounted like the other certs.

2.3 Downstream MTLS deployment

If is it desired that client cert be validated, you can define, ENVOY_DOWNSTREAM_TLS_CA_CERT
to point to trust cert to validate. This cert can be mounted similar to other certs or just point to a
system CA cert.

2.4 Secure Logging
Front proxy can perform logging over HTTPS. This can be achieved by simply adding the below

environment,
ENVOY_AUTHZ_SERVICE=ext_authz-https-service

2.5 Kill Switch

Front proxy performs health check on the logging endpoint (usually an edge controller or an
intermediate load balancer). If the health of the logging endpoint is detected to be bad, front proxy
will cease logging to conserve the resources, although the health checks will continue to be
performed. The logging endpoint is assumed to be bad if it returns a non-200 status code.

As part of policy push, edge controllers will be configured the desired logging mode for the sensors
(like front proxy). If logging mode is no-logging or in kill switch mode, edge controller will respond
with non-200 to every logging or health check from the front proxy.

The behavior with an intermediate load balancer will remain the same. The load balancer is expected
to perform health checks on the upstream edge controllers and respond back accordingly to the front
proxy.

2.5 Advanced configurations

Front proxy is currently built on top of envoy proxy. While the previous method provides for a
much simpler and easier deployment, the front proxy allows for a direct configuration via envoy
yaml. To do, so one can define their own envoy.yaml and mount it inside the front proxy image and
define the below environment variable,

ENVOY_USE_THIS CONFIG_FILE=/tmp/externalenvoy.yaml

7\ Proprietary and confidential Information ©2024, AppSentinels.ai

ﬂ 1| AppSentinels.ai

Application Security Re-invented

services:

front-service:
image: appsentinels/front-proxy:latest
env_file:

- ./env/env-envoy.txt
expose:

- ${ENVOY_LISTENING_PORT}
ports:

- "${ENVOY_EXTERNAL_DATA_LISTENING_PORT}:${ENVOY_LISTENING_PORT}"
volumes:

- /var/crash:/var/crash

- ./externalenvoy.yaml:/tmp/externalenvoy.yaml

2.6 ECS Support

2.6.1 ECSon EC2
Front proxy can be deployed in side car mode for ECS on EC2 without having to change the
application ports.

Please note
1. Capability "NET_ADMIN" needs to be added for side car proxy mods
2. Sidecar mode isnt supported on older kernels (~4.1x) of Amazon Linux 2

Below sample config provides an example of an application listening on HTTPS port 8091 and front
proxy sidecar deployed along with it. This example also includes secure logging onto controller.

"taskDefinitionArn"
"containerDefinitions": [
{
"name": "loopback",
"image": "appsentinels/http-server:latest”,
"portMappings": [
{
"name": "loopback-8091-tcp",
"containerPort": 8091,
"hostPort": 8091,
"protocol"”: "tcp",
"appProtocol”: "http"

"name": "front-proxy",
"image": "appsentinels/front-proxy:latest",
"portMappings": [
{
"name": "proxy",
"containerPort": 8000,
"hostPort": 8000,
"protocol": "tcp"
}

1

"essential": true,

"environment": [

{
"name": "ENVOY_UPSTREAM_TLS",
"value": "true"

}s

8| Proprietary and confidential Information ©2024, AppSentinels.ai

ﬂ AppSentinels.ai

Application Security Re-invented

"ENVOY_DOWNSTREAM_TLS_SERVER_CERT",
": "/etc/server_public.crt"

"ENVOY_DOWNSTREAM_TLS_SERVER_PRIVATE_KEY",
": "/etc/server_private.key"

"ENVOY_SERVICE_NAME",
": "127.0.0.1"

"PROXY_SIDECAR",
"yes"

"ENVOY_LISTENING_PORT",
": "8000"

"ENVOY_SERVICE_PORT",
: "8091"

"ENVOY_ON_PREM_CONTROLLER",
": "10.101.3.242"

"ENVOY_AUTHZ_SERVICE",
": "ext_authz-https-service"
}
1,
"linuxParameters": {
"capabilities": {
"add": [
"NET_ADMIN"
1,
"drop": []

s
¥
1,
"family": "ECS-ON-EC2-HTTP-14-11-2024",
"executionRoleArn": "arn:aws:iam::488922454646:role/ecsTaskExecutionRole",
"networkMode": "awsvpc"

2.6.2 Fargate

Fargate is very restrictive in-terms of capabilities provided for sensor deployment. Fargate doesn't
allow for NET_ADMIN or any other privilege escalation. Hence front proxy cannot be deployed in side
car proxy mode. The only solution is for front proxy to own the existing application ports and changing
of the original application ports.

Below is an example of where earlier application ‘loopback’ was listening on port 443 but on injection
of sidecar, will listen on 8443. Port 443 being now owned by envoy defined by
ENVOY_LISTENING_PORT

"containerDefinitions": [

9| Proprietary and confidential Information ©2024, AppSentinels.ai

plice Security Re-invented

ﬂ AppSentinels.ai

"name": "loopback",
"image": "appsentinels/http-server:latest",

"portMappings": [
{
"name": "loopback-8443-tcp",
"containerPort": 8443,
"hostPort": 8443,
"protocol”: "tcp",
"appProtocol": "http"

1

"environment": [

{
"name": "HTTPS_SERVICE_PORT",

"value": "8443"

"name": "sidecar",
"image": "appsentinels/front-proxy:latest",
Yg @,
"portMappings": [
{
"name": "sidecar-443-tcp",
"containerPort": 443,
"hostPort": 443,
"protocol": "tcp",
"appProtocol": "http"

1

"essential": true,
"environment": [

{
"name": "ENVOY_UPSTREAM_TLS",

"value": "true"

"ENVOY_DOWNSTREAM_TLS_SERVER_CERT",
"/etc/server_public.crt"

"ENVOY_DOWNSTREAM_TLS_SERVER_PRIVATE_KEY",
"/etc/server_private.key"

"ENVOY_SERVICE_NAME",
"127.0.0.1"

"ENVOY_LISTENING_PORT",
"a43"

"ENVOY_SERVICE_PORT",
"8443"

"ENVOY_ON_PREM_CONTROLLER",
"10.101.3.242"

"name": "ENVOY_AUTHZ_SERVICE",
"value": "ext_authz-https-service"

10 | Proprietary and confidential Information 4, AppSentinels.ai

ﬂ AppSentinels.ai

Application Security Re-invented

2.7 K8 Sidecar Support

Front proxy can be inserted as a sidecar in existing K8 deployments. Front proxy can terminate TLS
connections on behalf of application and also perform mutual TLS. Please refer to section
Configuration via environmental variables.

Front proxy will need to be passed environmental variables as configuration. The variables usually
point to certificate locations which can turn on required TLS or mTLS features.

Below is a sidecar deployment for establishing mTLS for both upstream and downstream. It unlikely
that upstream will require mTLS as the communication will be within the pod.

kind: Deployment

spec:
volumes:
- name: domain-server-secret
secret:
secretName: domain-server-secret
containers:
Sample application, listens on port 9010 for HTTPS and 9000 for HTTP
- name: http-service
image: appsentinels/http-server:latest
imagePullPolicy: IfNotPresent
ports:
- name: getextractport
containerPort: 9010
name: front-proxy
image: appsentinels/front-proxy:latest
imagePullPolicy: IfNotPresent
volumeMounts:
- name: domain-server-secret
mountPath: /etc/server_public.crt
subPath: appl.crt
readonly: true
name: domain-server-secret
mountPath: /etc/server_private.key
subPath: appl.key
readOnly: true
mTLS: CA cert for validating client certificate (load balancer or app cert validation)
name: domain-server-secret
mountPath: /etc/ssl/certs/ca-certificates.crt
subPath: myCA.crt
readOnly: true
securityContext:
capabilities:
Needed for installing filters to punt traffic to the sidecar
Elo[o
- NET_ADMIN
env:

On-prem controller to send logs to, update with IP or hostname (no schema or port needed)

11| Proprietary and confidential Information ©2024, AppSentinels.ai

ﬂ AppSentinels.ai

Application Security Re-invented

name: ENVOY_ON_PREM_CONTROLLER
value: <controller-ip-or-hostname>

Keep it same as the target port of container
name: ENVOY_SERVICE_PORT
value: "<target container port, in this case 9010>"

Downstream side TLS certs, this will same as the certs applications were presenting earlier
Server cert presented by sidecar to other apps or load balancers downstream

name: ENVOY_DOWNSTREAM_TLS_SERVER_CERT

value: "/etc/server_public.crt”

name: ENVOY_DOWNSTREAM_TLS_SERVER_PRIVATE_KEY

value: "/etc/server_private.key"

mTLS: Define this client location if sidecar needs to be validate client certificate
name: ENVOY_DOWNSTREAM_TLS_CA_CERT
value: "/etc/ssl/certs/ca-certificates.crt”

Upstream side TLS certs
Define this if sidecar needs to be validate server (i.e. app) certificate. It is unlikely that
intra-pod
communication will be TLS, otherwise set this to "false"
name: ENVOY_UPSTREAM_TLS
value: "true"
For upstream mTLS, location where client cert presented by front proxy to app is present. This
along with ENVOY_UPSTREAM_TLS CLIENT_PRIVATE_KEY will enable upstream TLS
enable upstream TLS
- name: ENVOY_UPSTREAM TLS_CLIENT CERT
value: "/etc/server_public.crt"
name: ENVOY_UPSTREAM_TLS_CLIENT_PRIVATE_KEY
value: "/etc/server_private.key"

CA cert for upstream server certificate validation
name: ENVOY_UPSTREAM_TLS_CA_CERT
value: "/etc/ca-certificate.crt"

Leave this to "127.0.0.1" for sidecar in K8 pods
name: ENVOY_SERVICE_NAME
value: "127.0.0.1"

No change needed here
name: PROXY_SIDECAR

value: "yes"

name: ENVOY_LISTENING_PORT

value: "8000"

Sample Spec: :
proxy-sidecar-mtls.yaml|

3. Verify Deployment

The latest version of AppSentinels servers provides sensor visibility. Once the proxy is brought and
verified to be running correctly (via docker ps), it should be visible on the dashboard under
organization’s system health page.

12 | Proprietary and confidential Information 24, AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/k8/sidecar/front-proxy-sidecar-mtls.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/k8/sidecar/front-proxy-sidecar-mtls.yaml

	1. Introduction
	2. Deployment Options
	2.1 Deployment using dockers
	2.1.1 Configuration via environmental variables
	2.1.2 Starting front proxy service

	2.2 Upstream MTLS deployment
	2.3 Downstream MTLS deployment
	2.4 Secure Logging
	2.5 Kill Switch
	2.5 Advanced configurations
	2.6 ECS Support
	2.6.1 ECS on EC2
	2.6.2 Fargate

	2.7 K8 Sidecar Support

	3. Verify Deployment

