1]

QE AppSentinels.ai

Application Security Re-invented

AppSentinels AP| Security Platform
Sniffer Mode Deployment

Proprietary and confidential Information ©2025 AppSentinels.ai

HE AppSentinels.ai

Application Security Re-invented

Tl oo [o1 [o] o USSP PPPOPPRTTIRE 3
[D1=T o] (o3 V70 01T Y A O o1 4] oIS PPPPPPRTIRE 4
Integrated Controller and Sniffer Sensor DeploymMeNnt.........coovviii e e e e 4
o]0 Te] [=4V SRR 4

[DL=T o] (o1Y 0 aT=T o A D I=Y - | U UPRRPPRPR 5
o]0 To] [o1=4Y AP UPURRRPPP 7
LY o] (o) VN o F-d ol @o T 1 o] | 1= oo URURR 7

D LT o] (oYY a1 i T G Y=] o o P UPRRRRPPPPP 8
YT ol U T o = =4 o ¥ = 9
o0 o=l R U=To LT =T L= o) RPN 9
ArChiteCtUIrE SUPPOIT oo e e e e e e e e e s e ae e e e e e e e e esannneeens 9
Sensor deployment as Ingress sidecar in KUDEINETESccoociiiieiii ittt 9
Sensor deployment as Pod sidecar in KUDEINELESccccviiiiiiieiiiiiiee et 11
Sensor deployment as DaemonSet in KUDEINETESccc.vviieciiieiiiieecccee e 13
Sensor deployment iN AWS EC2 ...ttt e e e e e e rre e e e e e s e santaae e e e s e ennseeeeeeeeeennnnns 14
Yo g1 o1 A Ofo Tl 4 F={0[=] o] s RPN 15
Sensor deploymeENnt iN AWS ECS ...ttt ertee et e st e s tree e s ta e e e s abae e esabtee s ennteeaennraeeseneeas 15
HOW It WOTKS ..ttt e e st e e e saba e e e s ssabbeeessnbaeeesnns 15

V=1 ToTe R U] o] o Yo] o i =To ISP UPPPRRPPR 16

B S GXo L =T [V T =T o a =1 o X RSO P P PPPPPRRN 16

FAN YA I Il ' | 17
AWS CloUAFOrMAtionuueiiiiiiiieiciiiee ettt s e e e s saee e e s sata e e e e sareeeesnnsaneeeenns 18
Sensor deployment on host (CONTAINEI-185S).......c.uiiiiiiiciieeiie et 20
PrOCEAUIE .ottt e e e sttt e e e s bt e e e s e abeeesesabbeeeesabeeeesansraeesaans 20
Configuring and Managing Installed ServiCes.......ocvuiiiiiiiiiiiiiiiei e 20
Y] Vi [ol N o] a1 ={U [= 1 To] o IR 20
Memory Usage Configuration (MEMORY_MAX)cccooiiiiiiiiiiieeeccieee e eeieee e 20

CPU Usage Configuration (CPUQUOTA)......ccccciuiiieiiiiiieeeciieee e ceiteeeeecreeeeeeciveee e eenraee e 21
Post-Install: Reload systemd and Start SErvicesccovvveeeieeiieicciiiieeeeee e, 21
Modifying environmental Variables........cccovvveeiiiiiiiiciiiieeeee e 22
Debugging and LOGEING ...ccccc e e e e e e e e e e e aaaeeas 22

RV LTV D Z=Y o Lo 37 1 01T o | USSRt 22
JAYo VT aTol=Te [@eTa T (V] =Y 1o o [PPSR 22
Performance Mode ConfigUration..........ccccciiii it e e etee e e bee e e e aaes 22
Filtering for URI Extension, Hostname, URI and Extension Filtering.........ccccccoceeeecveeeccieeeeeciee e 23
2| Proprietary and confidential Information ©2025 AppSentinels.ai

GB AppSentinels.ai

Application Security Re-invented

SKIP_HOSTNAME_REGEXettiiiiiiiiiiiiiieeeite ettt s e s 23
HOSTNAME_INCLUDE_REGEXcetiiiiiiieiiiiieee ettt e s e e s e e e e e s 23
SKIP_EXTENSIONS ...ttt s 24
SKIP_URI_REGEXcciiiitiiiiiiiiiiiiitiece ittt 24
Order of EValUGLioNcoouiiiiiiieice e e 25
Regex SYNtaxX and ESCAPING.....cccvreeiieeeeeecciirreeeeeeeeeececrreee e e e e e e sesbrreeeeeeeeeesesanraeeeeeeessennnns 25
NOTES ... 25
R LTl Y= 0] o] o= SRR 25
DePloyMENT/DEDUZEING ...occveeieeiiie e cteectecte e ste e te s tte st e st e s ae s ta e s tbe st e e tesabesabeeabesabesabesnbeenbeenseenseensensenns 26
Deploying sniffer sensor/integrated sensor CONLroller.......c..ccevvieiiiiciieciecciece e 26

3] Proprietary and confidential Information ©2025 AppSentinels.ai

HB AppSentinels.ai

Application Security Re-invented

Revision | Date Modified | Author | Comments

1.0 08-Jan-24 Initial Draft

1.1 01-Aug-24 Sachin | Merged documentation into single sniffer-
based document

1.2 06-Aug-24 Arun Merged AWS deployment details in this
document

1.3 23-08-24 Sachin | Support for daemonset based sniffer

1.4 18-Oct-24 Sachin | Aarch/Arm image details and instance config

1.5 28-Oct-24 Sachin | Secure logging documentation

1.6 19-Feb-24 Sachin | Deployment with ingress and app sidecar

1.7 01-Jun-25 Sachin | Support for URI and hostname filtering

1.8 18-Jul-25 Sachin | Updated non-container support

1.9 3-Nov-25 Sagar Updated URI regex and sampling config

4| Proprietary and confidential Information ©2025 AppSentinels.ai

HB AppSentinels.ai

Application Security Re-invented

Introduction

AppSentinels Sniffer Sensor deployment is Out-Of-Band deployment mode, without any
modification required in the application configuration and application environment.

AppSentinels Sniffer Sensor (called sensor henceforth) has to be deployed on the Application
Server as a docker instance and should be able to see the unencrypted traffic of incoming
traffic and outgoing traffic to upstream services.

The Sniffer Sensor captures the HTTP traffic on the specified interface(s) and forwards the API
traffic to the AppSentinels Edge Controller (called controller henceforth).

To take preventive action against Security Events and Threat Actors requires integration of
Firewall or APl Gateway with AppSentinels APl Security Platform since this deployment is in
Out-Of-Band mode.

Deployment Options

Integrated Controller and Sniffer Sensor Deployment
The Controller and Sensor runs as single docker instance on the application server. This
deployment option is preferred, when one instance of Sensor and Controller is required.

5] Proprietary and confidential Information ©2025 AppSentinels.ai

GE AppSentinels.ai

Application Security Re-invented

Topology

AppSentinels
Cloud Platform

T

O

HTTPS

LR
Application

Server A

«®

|
1 - b
1 = -

’H\msg LIE
1
|
1

‘_
HTTH

g

Controller and
Sniffer Sensor

API
- bateway_

L
Application
Server B

- e e e e .

Application Environment

Deployment Details

AppSentinels Integrated deployment captures the HTTP Traffic, processes the API traffic and
forwards the meta data to the Cloud Platform for Al/ML processing. The Edge Controller
detects the Security Events and takes preventive action using Firewall/API GW.

Pre-Requisites: -
e Linux OS with docker and docker-compose installed
e Minimum 2 vCPU (x86_64) & 4 GB RAM
e 50 GB disk space
e Network connectivity to AppSentinels API Security Platform

6 | Proprietary and confidential Information ©2025 AppSentinels.ai

E]B AppSentinels.ai

Application Security Re-invented

version: "3.3"
services:
onprem_controller:
container_name: onprem-controller
restart: on-failure:5
image: appsentinels/ng-controller:latest
hostname: appsentinels-opc-sniffer
environment:
SAAS_API_KEY_VALUE=<your api key> # Add API key you got from Appsentinels support
APPLICATION_DOMAIN=<domain> # Add the name of application or application group
ENVIRONMENT=<environment> # Add environment, production or UAT or staging
SAAS_SERVER_NAME=in-cloud.appsentinels.ai
TAP_INTERFACE=<interface to sniff on> #Add TAP device interface to sniff API traffic
TAP_FILTER=<bpf filter eg: port-3000-or-8090-and-tcp> #Add TAP filter details, refer documentation

network_mode: "host™

logging:
driver: local
options:
max-size: 1€m
volumes:
- [/var/crash:/var/crash
- /var/log/appsentinels:/var/log/appsentinels

Deploy AppSentinels Integrated Edge Controller and Sniffer Sensor as docker container by
updating the above YAML configuration with values specific to application environment.

https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-
compose/docker-compose-tapmode.yaml

- Please note that when bringing up multiple controllers, ensure hostname
isn't repeated.
- Integrated controller and sniffer is supported only on x86-64 platforms

For the TAP filter, set the filter as per Berkley Packet Filter.

For example, to only sniff API traffic for the service listening on port 8080, set the filter to
port-8080-and-tcp.

To sniff on port 8081 as well, set the filter to port-8080-or-port-8081

To sniff on a range of ports say (8000 to 8080), set the filter to tcp-portrange-8000*8080

71| Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-tapmode.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-tapmode.yaml

GE AppSentinels.ai

Application Security Re-invented

Controller and Sensor Deployed Separately

The Controller and Sensor are deployed separate docker instances. This deployment option
is preferred, when multiple Sniffer Sensors are required to monitor different application
services with one or more Controller.

API
1o Latewa

Topology
AppSentinels
Edge Controller
Meta Data AppSentinels
—
Cloud Platform
o I_ ___________ 1
F ! A :
T 1 7 D - !
1 - — 1
1 = - 1
I TTTTTT :
: Application 1
A e e @ : Server A :
: __________ : : @ ! \)“‘ b e == I
1D — BIEN G
) 1 HTTRS 1
1
| : |
1
1

Application
Server B

Sniffer Sensor
J/
[NNNNN

Application Environment

Deploy Edge Controller

AppSentinels Edge Controller processes the API traffic data received from the Sensor and
forwards the meta data to the Cloud Platform for Al/ML processing. The Edge Controller
detects the Security Events and takes preventive action using Firewall/API GW.

Pre-Requisites: -

Linux OS with docker and docker-compose installed
Minimum 2 vCPU (x86_64) & 4 GB RAM

50 GB disk space

Network connectivity to AppSentinels API Security Platform

While this document covers basic deployment using docker-compose, please refer to Edge
Controller Deployment guide for other methods of deployment.

8| Proprietary and confidential Information ©2025 AppSentinels.ai

ﬂ 1| AppSentinels.ai

Application Security Re-invented

version: "3.3"
services:
appsentinels-edge-controller:
container_name: appsentinels-edge-controller
restart: on-failure:5
image: appsentinels/ng-controller:latest
hostname: appsentinels-edge-controller
environment:
- APPLICATION_DOMAIN=<your-app-domain> # Add the name of application or application group
- ENVIRONMENT=<environment> # Add environment, production or UAT or staging
- SAAS_SERVER_NAME=in-cloud.appsentinels.ai

- SAAS_API_KEY_VALUE=<your provided api key> # Add the name of application or application group
ports:

- "9004:9004"

- "127.0.0.1:9101:9101"

logging:

driver: local
options:
max-size: 1@m
volumes:
- /var/crash/:/var/crash

Deploy AppSentinels Edge Controller as docker container by updating the above YAML
configuration with values specific to application environment.
https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-
controller.yaml

- Please note that when bringing up multiple controllers, ensure hostnhame
isn't repeated

Integrated controller and sniffer is supported only on x86-64 platforms

Deploy Sniffer Sensor

ame: sniffer-sensor
on-failure:5
appsentinels/ng-controller:latest
: appsentinels-sniffer-sensor

- REMOTE_CONTROLLER_SERVER_NAME=<appsentinels-controller> #
- REMOTE_CONTROLLER_SERVER_PORT=98@ ! dg ntr F
- ENVIRONMENT=<environment> # e onme

- SNIFFER_SENSOR_INSTANCE=<inst name> # Pr

- TAP_INTERFACE=<interface to sniff on> # d

- TAP_FILTER=<Add filter details> # bpf en s 2 - > bas on app
ROTOCOL=http
"host"

- /crash: fvar/crash
- /var/log/appsentinels:/var/log/appsentinels

Deploy AppSentinels Sniffer Sensor on the docker container by updating the above YAML
configuration with values specific to application environment.
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-
compose/docker-compose-sniffer-sensor-medium.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-
compose/docker-compose-sniffer-sensor-small.yaml

For the TAP filter, set the filter as per Berkley Packet Filter.

9| Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-controller.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/k8/controller/edge-controller.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-sniffer-sensor-medium.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sample-docker-compose/docker-compose-sniffer-sensor-medium.yaml

HE AppSentinels.ai

Application Security Re-invented

For example, to only sniff API traffic for the service listening on port 8080, set the filter to
port-8080-and-tcp.

To sniff on port 8081 as well, set the filter to port-8080-or-port-8081

To sniff on a range of ports say (8000 to 8080), set the filter to tcp-portrange-8000*8080

Secure Logging
Sniffer has the capability to perform logging onto edge controller via HTTPS. Setting the below
environments will ensure this,

Environment Default Description

RELAY_PROTOCOL http Logging protocol onto controller. Alternate
option is https

HTTPS_INSECURE_SKIP_VERIFY false Ignore controller cert validation in case

RELAY_PROTOCOL is https

Resource Requirements
Sniffer sensor can be tuned for throughput via 3 parameters, resources of CPU/memory and
via environment variable of TAP_PROFILE.

CPU Memory TAP_PROFILE Throughput (API request per
second)
0.5 256M low 250 req/sec
512M medium 500 req/sec
2 2G default 1000 req/sec

While TAP_PROFILE isnt a mandatory parameter, it helps to fine-tune the buffer resources
inside Sniffer.

Please note that this is only relevant to sniffer sensor only and doesn’t apply to integrated
controller and sniffer based deployments.

Architecture Support
Sniffer sensor is supported on x84-64 and aarch64/arm architectures. The container images
used vary based on this.

Architecture Image
x86-64 appsentinels/ng-controller:latest
aarch64/arm appsentinels/ng-controller:aarch-latest

Rest of the document assumes the architecture being used is x86-64. Please change the specs
according if otherwise.

Sensor deployment as Ingress sidecar in Kubernetes

Provided API traffic is clear text, sniffer sensor can be deployed as a sidecar to the existing
ingress controller. This provides a single point of integration for a cluster.

10 | Proprietary and confidential Information ©2025 AppSentinels.ai

ﬂ 1| AppSentinels.ai

Application Security Re-invented

Edge Controller

HTTP(s)

-
I
I
— } — =

I},
=l

Reference sidecar spec:
https://sample-config.appsentinels.ai/appsentinels-
deployment/sniffer/sidecar/deployment-nginx-tap-sample.yaml

Procedure:
1. Patchthe ingress controller spec as in the above reference spec (look for start and end
of appsentinels block)

apiVersion: apps/v1l
kind: Deployment
metadata:

name: nginx-ingress

namespace: nginx-ingress
spec:

replicas: 1

serviceAccountName: nginx-ingress

containers:
R R R R R R
Start of properties of appsentinels sniffer sidecar container
- image: appsentinels/ng-controller:latest

imagePullPolicy: Always

name: appsentinels-controller
env:
- name: APPLICATION_INFO
value: <your application>
name: ENVIRONMENT
value: <your environment>
name: SNIFFER_SENSOR_INSTANCE
value: <sniffer sensor instance, eg: service-1>
name: REMOTE_CONTROLLER_SERVER_NAME
value: <dns mapped hostname or IP of controller, eg: remote-controller>
name: REMOTE_CONTROLLER_SERVER_PORT
value: "9004"

11 | Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/sidecar/deployment-nginx-tap-sample.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/sidecar/deployment-nginx-tap-sample.yaml

ﬂ 1| AppSentinels.ai

Application Security Re-invented

name: TAP_INTERFACE

value: default

name: TAP_FILTER

value: tcp-and-port-not-22-and-port-not-443-and-port-not-9004
name: RELAY_PROTOCOL

value: http

resources:
requests:
cpu: 0.5
memory: 512Mi
limits:
cpu: 0.5
memory: 512Mi
end of properties of appsentinels sniffer sidecar container
H T A R p e R
- image: nginx/nginx-ingress:2.1.0
imagePullPolicy: IfNotPresent
<existing spec of ingress>

2. Define relevant resource limits for the AppSentinels sniffer container (refer here)

3. Configure the container’s environmental variables like,
a. REMOTE_CONTROLLER_SERVER_NAME
b. REMOTE_CONTROLLER_SERVER_PORT
c. TAP_INTERFACE =default
d. TAP_FILTER=tcp-and-port-not-22-and-port-not-443-and-port-not-9004 # Modify based on application
service listening port
e. SNIFFER_SENSOR_INSTANCE=<instance name> # Provide user identifiable instance name for visibility,
eg: sniffer-sensor-dev-app-1
4. Insert the sniffer into the ingress pod

> kubectl —f deployment-nginx-tap-sample.yaml

Sensor deployment as Pod sidecar in Kubernetes

AppSentinels
Edge Controller

12 | Proprietary and confidential Information ©2025 AppSentinels.ai

ﬂ AppSentinels.ai

Application Security Re-invented

Reference sidecar spec:
https://sample-config.appsentinels.ai/appsentinels-
ment-sniffer-sensor-tap-sam

Procedure:
1. Patch the sidecar spec as in the above reference spec (look for start and end of
appsentinels block)

kind: Deployment
apiVersion: apps/vil
metadata:

name: appl

namespace: http-service

labels:

app: appl

containers:

H HEHHHHHHE SR S A R R S R R
Start of properties of appsentinels sniffer sidecar container
- image: appsentinels/ng-controller:latest
imagePullPolicy: Always
name: appsentinels-controller
env:
- name: APPLICATION_INFO
value: <your application>
name: ENVIRONMENT
value: <your environment>
name: SNIFFER_SENSOR_INSTANCE
value: <sniffer sensor instance, eg: service-1>
name: REMOTE_CONTROLLER_SERVER_NAME
value: <dns mapped hostname or IP of controller, eg: remote-controller>
name: REMOTE_CONTROLLER_SERVER_PORT
value: "9004"
name: TAP_INTERFACE
value: default
name: TAP_FILTER
value: tcp-and-port-not-22-and-port-not-443-and-port-not-9004
name: RELAY_PROTOCOL
value: http
resources:
requests:
cpu: 0.5
memory: 512Mi
limits:
cpu: 0.5
memory: 512Mi
end of properties of appsentinels sniffer sidecar container
#HHE R R R R
- name: http-service
image: appsentinels/http-server:latest
imagePullPolicy: IfNotPresent
ports:
- name: getextractport
containerPort: 9000

Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/sidecar/deployment-sniffer-sensor-tap-sample.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/sidecar/deployment-sniffer-sensor-tap-sample.yaml

E]E AppSentinels.ai

Application Security Re-invented

env:
- name: HTTP_SERVICE_PORT

value: "9000"

2. Define relevant resource limits for the AppSentinels sniffer container (refer here)

3. Configure the container’s environmental variables like,
a. REMOTE_CONTROLLER_SERVER_NAME
b. REMOTE_CONTROLLER_SERVER_PORT
c. TAP_INTERFACE =default
d. TAP_FILTER=tcp-and-port-not-22-and-port-not-443-and-port-not-9004 # Modify based on application
service listening port
e. SNIFFER_SENSOR_INSTANCE=<instance name> # Provide user identifiable instance name for visibility,
eg: sniffer-sensor-dev-app-1
4. Insert the sniffer into the side car pod

> kubectl —f deployment-sniffer-sensor-tap-sample.yaml

Sensor deployment as DaemonSet in Kubernetes

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. This provides an
opportunity to deploy sniffer sensor without having to make any changes to existing
application pods.

Kubernetes Cluster

Daemonset based
sniffer sensor

Daemonset based

sniffer sensor

The sniffer will be deployed as a DaemonSet container with host network access and
privileges to sniff on the node’s network traffic. By configuring the correct eBPF filters,
application traffic can be learnt.

Reference daemonset spec:

14 | Proprietary and confidential Information ©2025 AppSentinels.ai

E]B AppSentinels.ai

Application Security Re-invented

https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/k8-
daemonset/appsentinels-sniffer-daemonset.yaml

Procedure:
1. Create a namespace called “appsentinels”
2. Define relevant resource limits for the AppSentinels sniffer container (refer here)

3. Configure the container’s environmental variables like,
a. REMOTE_CONTROLLER_SERVER_NAME
b. REMOTE_CONTROLLER_SERVER_PORT
c. TAP_INTERFACE =default*
d. TAP_FILTER=tcp-and-port-not-22-and-port-not-443-and-port-not-9004 # Modify based on application
service listening port
e. SNIFFER_SENSOR_INSTANCE=<instance name> # Provide user identifiable instance name for visibility,
eg: sniffer-sensor-dev-app-1
4. Insert the daemonset into the kubernetes cluster

> kubectl —f appsentinels-sniffer-daemonset.yaml

Please note that the daemonset need to be inserted only on worker nodes where the
application API traffic is seen.

Sensor deployment in AWS EC2

Sniffer sensor can also be deployed in a zero touch manner on EC2 instances. AWS provides
for user data configuration during AMI launch. This allows for installation of required tools or
packages during the first boot of an AMI.

AppSentinels provides an user data script that can be inserted into the AMI during its launch.
This script installs the AppSentinels Sniffer service on Ubuntu, Amazon Linux or RHEL/CentOS
along with necessary utils like docker (if not present).

If inserting as a user data script isn’t feasible, this script can run in a standalone fashion.

Script Configuration:

Depending on the deployment and the application running, the following basic configurations
will need to be done.

REMOTE_CONTROLLER_SERVER_NAME="<edge controller hostname>" #hostname of deployed edge controller

TAP_INTERFACE="default" #Interface over which API traffic traverses.
#If unknown, keep as default

TAP_FILTER="<ebpf filter with hyphens for spaces>" #Filter as described in earlier section of
#the document

TAP_PROFILE="1ow" #(low|medium|high) as per resource
#availability

INSTANCE_NAME="default” # Provide user identifiable instance name for
visibility, eg: sniffer-sensor-dev-app-1

RELAY_PROTOCOL="http" #input needed here for logging

protocol

#(http|https)
HTTPS_INSECURE_SKIP_VERIFY="true" #input needed here to skip verify for https
#(set to true if using self-signed certs)

Script Location:

15 | Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/k8-daemonset/appsentinels-sniffer-daemonset.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/k8-daemonset/appsentinels-sniffer-daemonset.yaml
https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/install-appsentinels-sniffer.sh

HE AppSentinels.ai

Application Security Re-invented

https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/install-appsentinels-
sniffer.sh

Sensor deployment in AWS ECS

This describes different methods to deploy AppSentinels sidecar sensor in the AWS ECS
cluster. In this case the controller is deployed separately
How it works
e Sensor sidecar deployment requires following inputs:
o Cluster name
Service name
Task definition family or ARN
Sensor name
Sensor image complete URL
Controller name or URL
Controller port number
Type of environment (Dev/QA/Prod)
TAP interface name
= This can be specified as default, sensor picks the one having default route
defined.
= Otherwise, please specify interface name as eth0 and eth1 for launch type
EC2 and FARGATE respectively.
o eBPFfilter
o Relay protocol
o AWS region
e Fetch the existing task definition, identified by the task definition family or ARN.
o Check if the AppSentinels sensor sidecar spec is already present in the task
definition.
o If AppSentinels sidecar spec is not present, append AppSentinels sensor spec in
container definitions in task definition.
¢ Include different environment variables in the AppSentinels container spec based on
the values passed as parameters.
¢ Update the task definition in the ECS cluster.
¢ Update the service with the new task definition, so that all the containers are
recreated including AppSentinels sensor container.

0O O 0O 0O O O O ©o

Methods supported
AppSentinels supports following methods of sensor sidecar deployment in AWS ECS cluster.
e AWS CLI script
e CloudFormation
TaskRole requirement
AppSentinels sensor generates logs and requires permissions to forward those logs to AWS
CloudWatch. This requires TaskRoleArn defined the in the task definition attached with the
ECS service. If the TaskRoleArn does not exist in the task definition, please follow the below
steps to create a TaskRole and attach the required policy with that role, before running the
steps to deploy AppSentinels sensor.

16 | Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/install-appsentinels-sniffer.sh
https://sample-config.appsentinels.ai/appsentinels-deployment/sniffer/install-appsentinels-sniffer.sh

HB AppSentinels.ai

Application Security Re-invented

o Create a file task-execution-assume-role.json with following contents.

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": """,
"Effect": "Allow",
"Principal”: {
"Service": "ecs-tasks.amazonaws.com"
s
"Action": "sts:AssumeRole"
}
]
}

e Create the task role using the command:
aws iam create-role --role-name <ECS Task Role Name> --assume-role-policy-
document file://task-execution-assume-role.json

e Execute following command:
aws iam attach-role-policy --role-name <ECS Task Role Name> --policy-arn
arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy

e Create afile ecs-task-logging-policy.json with following contents.

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [

"logs:CreatelLogGroup",
"logs:CreatelLogStream",
"logs:PutLogEvents",
"logs:DescribelLogStreams"

1,

"Resource": "*""Resource": [
"arn:aws:logs:*:*:log-group:/ecs/*",
"arn:aws:logs:*:*:log-group:/ecs/*:1log-stream:*"

]

}
]
}

e Create policy for enabling task logging. Please note the ARN of the policy displayed in
the output of the command.
aws iam create-policy --policy-name <ECS Task Logging Policy Name> --policy-
document file://ecs-task-logging-policy.json

e Attach the policy with the role.
aws iam attach-role-policy --role-name <ECS Task Role Name> --policy-arn <Policy
ARN>

e Update the TaskRoleArn in the task-definition of the ECS service in the cluster.

e Update the service with modified task definition.

AWS CLI script
e Please use script appsentinels_sensor_install.sh to deploy the AppSentinels sniffer
sensor in AWS ECS cluster.

17 | Proprietary and confidential Information ©2025 AppSentinels.ai

file://///task-execution-assume-role.json
file://///ecs-task-logging-policy.json

HE AppSentinels.ai

Application Security Re-invented

This script uses aws ecs CLI commands to get task-definition, register task-definition
and update the service.
This script requires parameters listed above.
Prerequisites:
o AWSCLI
o jq
IAM role permissions required
ecs:DescribeTaskDefinition
ecs:RegisterTaskDefinition
ecs:UpdateService
logs:CreateLogGroup
Doesn't create or modify IAM roles, but it uses existing Task role and
Execution role
o Task and execution roles should have permissions for task to run, pull images
and send logs
o Permissions to rule AWS CLI
Example:
https://sample-config.appsentinels.ai/appsentinels-deployment/aws-
ecs/appsentinels sensor install.sh

O O O O O

.Jappsentinels_sensor_install.sh test-cluster test-service test-app appsentinels-sensor
docker.io/appsentinels/ng-controller:latest appsentinels-controller 9004 dev ethO
port-80-and-tcp http ap-south-1

Where,

test-cluster is the name of the ECS cluster,

test-service is the name of the ECS service,

test-app is the task definition family,

appsentinels-sensor is the name given to AppSentinels sensor,
docker.io/appsentinels/ng-controller:latest is the AppSentinels sensor docker image,
appsentinels-controller is the name of the AppSentinels controller,

Controller port is 9004,

Environment is dev,

ethO is the tap interface,

The eBPF filter is port-80-and-tcp and

The relay protocol is http.

ap-south-1 is the AWS region.

AWS CloudFormation

It is possible to use AWS CloudFormation to deploy the AppSentinels sensor sidecar
container in ECS cluster.
The CloudFormation manifest is define in the appsentinels_sensor_deployment.yaml.
The commands used to create and update the stack are documented
in cloud_formation_cmds.txt along with the example command.
Prerequisites

o AWSCLI

18 |

Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/aws-ecs/appsentinels_sensor_install.sh
https://sample-config.appsentinels.ai/appsentinels-deployment/aws-ecs/appsentinels_sensor_install.sh

HE AppSentinels.ai

Application Security Re-invented

o jq
¢ IAM role permissions

o Need CloudFormation permissions, as well as Lambda permissions

o CloudFormation permissions
* cloudformation:CreateStack
» cloudformation:UpdateStack
* cloudformation:DeleteStack
* |ambda:CreateFunction
* |ambda:DeleteFunction
* lambda:AddPermission
* |ambda:RemovePermission
= iam:CreateRole
* jam:DeleteRole
= iam:PutRolePolicy
* jam:DeleteRolePolicy
= iam:AttachRolePolicy
* jam:DetachRolePolicy
= AWSLambdaBasicExecutionRole

o Other permissions
= ecs:DescribeTaskDefinition
» ecs:RegisterTaskDefinition
» ecs:UpdateService
= iam:PassRole (for TaskRole and TaskExecutionRole)
» logs:CreateLogGroup

e Example:
https://sample-config.appsentinels.ai/appsentinels-deployment/aws-
ecs/cloud formation cmds.txt

aws cloudformation create-stack --stack-name add-appsentinels-sensor-stack --
template-body file://appsentinels_sensor_deployment.yaml --parameters
ParameterKey=ExistingTaskDefinitionArn,ParameterValue=arn:aws:ecs:ap-south-
1:488922454646:task-definition/test-app:13
ParameterKey=SidecarContainerName,ParameterValue=appsentinels-sensor
ParameterKey=SidecarContainerlmage,ParameterValue=docker.io/appsentinels/ng-
controller:latest ParameterKey=EcsClusterName,ParameterValue=test-cluster
ParameterKey=EcsServiceName,ParameterValue=test-service
ParameterKey=ControllerServerName,ParameterValue=appsentinels-controller
ParameterKey=ControllerPort,ParameterValue=9004
ParameterKey=EnvironmentType,ParameterValue=test
ParameterKey=Taplnterface,ParameterValue=eth0
ParameterKey=TapFilter,ParameterValue=port-80-and-tcp
ParameterKey=RelayProtocol,ParameterValue=http
ParameterKey=AwsRegion,ParameterValue=ap-south-1 --capabilities
CAPABILITY_IAM CAPABILITY_AUTO_EXPAND

19 | Proprietary and confidential Information ©2025 AppSentinels.ai

https://sample-config.appsentinels.ai/appsentinels-deployment/aws-ecs/cloud_formation_cmds.txt
https://sample-config.appsentinels.ai/appsentinels-deployment/aws-ecs/cloud_formation_cmds.txt

HE AppSentinels.ai

Application Security Re-invented

Sensor deployment on host (container-less)

AppSentinels Sniffer can be deployed as a systemd service. This allows for deployment on
platforms which do not support containers.

Procedure

1. Download the provided deb package
sudo dpkg -i appsentinels-sniffer-<version>-<ubuntu-version>.deb
2. Resolve any missing dependencies

Please note that this package requires net-tools package to be present on the system

3. Verify installation: You can check that the package is installed with.

dpkg -1 | grep appsentinels-sniffer

Configuring and Managing Installed Services

After installing the DEB package, the following systemd services will be available:
e appsentinels-tapper.service
Runs Suricata in tap/sniffer mode to capture and process network traffic.
e appsentinels-data-path-handler.service
Handles data path processing and communication with the controller.

Service Configuration

The environment file for the sniffer is installed at: /usr/local/appsentinels-
onprem/env/env.txt

Memory Usage Configuration (MEMORY _MAX)

Both systemd services (appsentinels-tapper.service and appsentinels-data-path-
handler.service) support memory usage limits via the MemoryMax and MemoryLimit (older
kernels) directives.

By default, these are set in the service files generated by the packaging script:

/etc/systemd/system/appsentinels-tapper.service:
MemoryMax=700M
older kernels don't support MemoryMax
MemoryLimit=700M

20 | Proprietary and confidential Information ©2025 AppSentinels.ai

HE AppSentinels.ai

Application Security Re-invented

/etc/systemd/system/appsentinels-data-path-handler.service:
MemoryMax=300M
older kernels don't support MemoryMax
MemoryLimit=300M

Note:

e MemoryMax is supported on most modern Linux distributions. If your kernel does
not support it, MemoryLimit acts as a fallback.

e Setting these values too low may cause the service to be killed if it exceeds the limit

e Inthe above example, both the tapper and data path services together use max of
1G of memory

CPU Usage Configuration (CPUQuota)

Both systemd services (appsentinels-tapper.service and appsentinels-data-path-
handler.service) support CPU usage limits via the CPUQuota directive. By default, these are
set in the service files generated by the packaging script:

/etc/systemd/system/appsentinels-tapper.service:
CPUQuota=70%

/etc/systemd/system/appsentinels-data-path-handler.service:
CPUQuota=30%

Note:

e CPUQuota specifies the maximum CPU time that the service can use, expressed as a
percentage of a single CPU core.

e Avalue of 100% means the service can use up to one full CPU core (all threads
included).

e Avalue of 200% means the service can use up to two full CPU cores (all threads
included)

e Avalue of 50% means the service can use up to half a CPU core (all threads included)

e Setting these values too low may cause the service to be throttled or perform poorly
under high load.

e You can adjust these values based on your system's available CPU resources and
performance requirements.

Post-Install: Reload systemd and Start Services

After installing the deb package, perform config as above. You should reload the systemd
daemon and start the services. Optionally, you can enable them to start automatically on
boot.

Run the following commands as root (or with sudo):
sudo systemctl daemon-reload
sudo systemctl enable appsentinels-tapper (enable on boot)

21| Proprietary and confidential Information ©2025 AppSentinels.ai

HB AppSentinels.ai

Application Security Re-invented

sudo systemctl enable appsentinels-data-path-handler (enable
on boot)

sudo systemctl start appsentinels-tapper

sudo systemctl start appsentinels-data-path-handler

Modifying environmental variables
If you modify environment variables or configuration files, remember to reload and restart
the services:

sudo systemctl daemon-reload

sudo systemctl restart appsentinels-tapper

sudo systemctl restart appsentinels-data-path-handler

Debugging and Logging
Data Path Handler Logs
The data-path-handler service logs to the system journal.
To view recent logs:
sudo journalctl -u appsentinels-data-path-handler -f

Tapper (Suricata) Service Logs
The tapper service (appsentinels-tapper) also logs to the system journal.
To view logs:

sudo journalctl -u appsentinels-tapper -f

Troubleshooting Tips
If a service fails to start, check its status and logs:

sudo systemctl status appsentinels-tapper
sudo systemctl status appsentinels-data-path-handler

Verify Deployment

AppSentinels Edge Controllers deployed in your environment will be listed on the System
Health page on AppSentinels Dashboard.

Generate application traffic in the monitored application and check the APl catalogue on
AppSentinels Dashboard for the discovered APIs.

Advanced Configuration

Performance Mode Configuration

Performance mode for sniffer provides for an advanced tuning to improve logging and
resource efficiency. This configuration is advisable when the system properties are known
and well defined. Here is the procedure to configure the performance mode,

22| Proprietary and confidential Information ©2025 AppSentinels.ai

HB AppSentinels.ai

Application Security Re-invented

1. Set env TAP_PROFILE to performance. If specific interface is provided (like default or
ethO or lo), sniffer will create as many tapper threads as defined by
TAP_WORKER_THREADS

2. TAP_WORKER_THREADS should be set to as many CPUs one can afford. However, in

non-container based deployments, the CPU will be capped via CPUQuota and in

container based deployments, POD/docker resource limits apply

If TAP_WORKER_THREADS isn’t defined a single worker thread is created

4. ltis recommended that a single interface sniffing is performed to conserve resources
in performance mode

w

Filtering for URI Extension, Hostname, URI and Extension
Filtering

These environment variables should be set in the container environment for your sniffer
sensor.

SKIP_HOSTNAME_REGEX

Purpose:
Skip (exclude) HTTP transactions where the hostname matches this regular expression.

How it works:

e If the regex matches the hostname, the transaction is SKIPPED (not logged).
e If not set or empty, no hostnames are excluded by this filter.
e Do not include port numbers in the hostname for this filter.

Example values:

e SKIP_HOSTNAME_REGEX=""www\ .example\.com$"
Skips any transaction where the hostname is exactly www.example. com.
e SKIP_HOSTNAME_REGEX="(test|dev)\.mydomain\.org$"
Skips hostnames ending with test.mydomain.org or dev.mydomain.org.

HOSTNAME_INCLUDE_REGEX

Purpose:
ONLY process (include) HTTP transactions where the hostname matches this regular
expression.

How it works:

e If set, ONLY hostnames matching this regex are processed.
e [f the hostname does NOT match, the transaction is skipped.

23| Proprietary and confidential Information ©2025 AppSentinels.ai

https://www.example.com/

HE AppSentinels.ai

Application Security Re-invented

e If not set or empty, all hostnames are included (unless excluded by
SKIP_HOSTNAME_REGEX).

e Do not include port numbers in the hostname for this filter.
Example values:

e HOSTNAME_INCLUDE_REGEX=""api\."
Only process hostnames starting with api.

e HOSTNAME_INCLUDE_REGEX="(prod|main)\.mydomain\.org$"
Only process hostnames ending with prod.mydomain.org or
main.mydomain.org.

SKIP_EXTENSIONS

Purpose:
Skip (exclude) HTTP transactions where the URI path ends with one of the specified file
extensions.

How it works:

e Value should be a | (pipe)-separated list of file extensions (e.g., svg|png| jpg).
e If the URI path ends with one of these extensions, the transaction is skipped.
e If not set or empty, a default list of common static file extensions is used.

Default Extensions Skipped:

svg|txt|png|jpg|jpeg|io|tff|woff|woff2|ico|css|pdf|html|mp4|php|ajax
|js|gif|tiff|ttf|docx|wasm|aspx

Example values:

e SKIP_EXTENSIONS="svg|png|jpg|ico"
Skips URIs ending with .svg, .png, .jpg, or .1ico.
e SKIP_EXTENSIONS="js|css|woff2"
Skips URIs ending with . js, .css, or .woff2.

SKIP_URI_REGEX

Purpose:
Skip (exclude) HTTP transactions where the URI path contains the specified string.

How it works:

e Value should be a | (pipe)-separated list of path string (e.g.,
tracking|getprice|getval).

24 | Proprietary and confidential Information ©2025 AppSentinels.ai

HE AppSentinels.ai

Application Security Re-invented

e If the URI path contains with any of this string, the transaction is skipped.
e If not set or empty, nothing will be skipped.

Example values:

e SKIP URI_REGEX=jsonloopback]|timeout|headerloopback

Order of Evaluation

1. If HOSTNAME_INCLUDE_REGEX is set, the hostname must match this regex to be

processed.

2. If SKIP_HOSTNAME_REGEX is set, the hostname must not match this regex to be
processed.

3. If SKIP_EXTENSIONS is set, the URI path must not end with one of the specified
extensions.

4. If both hostname regexes are set, the hostname must:
a. Match the include regex, and
b. Not match the skip regex.
5. If SKIP_URI_REGEX is set, the URI must not match this regex to be processed.

Regex Syntax and Escaping

e Write regexes as you would in C or Python.
E.g., ~foo\.bar$, .*\.test\.local$
e Use a single backslash (\.) to escape metacharacters.
e InYAML (Kubernetes, Docker Compose), you may need to double the backslash (\\ .)
to ensure proper escaping.

Example for Kubernetes (helm chart variables)
values.yaml:
skipHostnameRegex: "Awww\\.example\\.comS"
includeHostnameRegex: ""api\\."
uriExtentionFilter: "svg|png|jpg"

Notes

e All regexes are case-insensitive.

e If neither hostname regex is set, all hostnames are processed.

e If both hostname regexes are set, both conditions must be satisfied.

e IfuriExtentionFilter (or SKIP_EXTENSION) is not set, a default list of static
file extensions is used.

25| Proprietary and confidential Information ©2025 AppSentinels.ai

HB AppSentinels.ai

Application Security Re-invented

Traffic Sampling

In case, sampling is preferred rather than complete logging, use env HTTP_SAMPLE_PERCENT.
This env takes a values between 1 to 99 (percent).

Note: If HTTP_SAMPLE_PERCENT value of 0 or 100 are considered to be invalid values and full
logging will be performed in that case.

Deployment/Debugging

Deploying sniffer sensor/integrated sensor controller

1. Confirm the listening ports of your application server. If this isn't known a prior, it can be
confirmed by running a tcpdump on the application server.

tcpdump —i <ingress device, eg: eth0, ens3 etc> port <application listening port> -n

Please set the <application listening port> to suspected listening port and hit your
application server and some activity should be seen with the above command

Example usage: tcpdump —i ethO port 8080 -n
2. Set the TAP_FILTER in the YAML for the sniffer as described in sections 3.2 or 4.3

3. Bring up the sniffer sensor using docker-compose
docker-compose -f <YAML spec> up —d

Also confirm if the container is running fine using “docker ps”

4. If application traffic is flowing, then sniffer sensor should be able to pickup HTTP traffic.
This can be confirmed via debugging interface on the sniffer/controller. We should be able
to see the counter TapMsgs increment

docker exec -it <container_name> /usr/local/appsentinels-onprem/utils/dp-commands.sh dp-debugstats

The output of this command will be of the format,

{

"TrafficStats":{"TapMsgs":18,"TapUsablePacket":18},

5. Deploy edge controller using the YAML specs as explained in section 4.2. Once the
appropriate environment values are filled, you can start the edge controller service,

docker-compose -f <YAML spec> up —d

26 | Proprietary and confidential Information ©2025 AppSentinels.ai

HE AppSentinels.ai

Application Security Re-invented

You can confirm if the container is running using “docker ps” command.

6. Sniffer sensor will ship logs to edge controller’s (default port 9004) usually running on a
different VM. To check if there is any connectivity issue between sniffer sensor and edge
controller, run the below tcpdump on the edge controller VM.

tcpdump -i <ingress device eg: eth0, ens3> -A 'port 9004 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2))
1= 0)' | egrep --line-buffered "A........ (GET |HTTP\/|POST |HEAD)|~[A-Za-z0-9-]+: " | sed -r 's/A........ (GET
|[HTTP\/|POST |HEAD)/\n\1/g'

The above command should output API requests called POST /mergedlogs which signals, that
connectivity is good between sensor and edge controller’s VM.

The above command assumes that sniffer is sending logs to port 9004, however, if you have
setup sensor to ship logs to a different port (via REMOTE_CONTROLLER_SERVER_PORT
environment variable in YAML), please change the port according in tcpdump

7. If edge controller is connected to AppSentinels cloud, you should be able to see your APIs
on the dashboard.

27 | Proprietary and confidential Information ©2025 AppSentinels.ai

	Introduction
	Deployment Options
	Integrated Controller and Sniffer Sensor Deployment
	Topology
	Deployment Details
	Topology
	Deploy Edge Controller
	Deploy Sniffer Sensor
	Secure Logging
	Resource Requirements
	Architecture Support

	Sensor deployment as Ingress sidecar in Kubernetes
	Sensor deployment as Pod sidecar in Kubernetes
	Sensor deployment as DaemonSet in Kubernetes
	Sensor deployment in AWS EC2
	Script Configuration:

	Sensor deployment in AWS ECS
	How it works
	Methods supported
	TaskRole requirement
	AWS CLI script
	AWS CloudFormation

	Sensor deployment on host (container-less)
	Procedure
	Configuring and Managing Installed Services
	Service Configuration
	Memory Usage Configuration (MEMORY_MAX)
	CPU Usage Configuration (CPUQuota)
	Post-Install: Reload systemd and Start Services
	Modifying environmental variables
	Debugging and Logging

	Verify Deployment

	Advanced Configuration
	Performance Mode Configuration
	Filtering for URI Extension, Hostname, URI and Extension Filtering
	SKIP_HOSTNAME_REGEX
	HOSTNAME_INCLUDE_REGEX
	SKIP_EXTENSIONS
	SKIP_URI_REGEX
	Order of Evaluation
	Regex Syntax and Escaping
	Notes

	Traffic Sampling

	Deployment/Debugging
	Deploying sniffer sensor/integrated sensor controller

